Combinação de agrotóxicos e mudanças climáticas pode matar peixes amazônicos

Pesquisa avaliou como um peixe amazônico, o tambaqui, responde quando exposto simultaneamente a uma mistura de agrotóxicos e a um cenário extremo de mudanças climáticas.

Foto: Fir0002/Wikipedia

Nos laboratórios do Instituto Nacional de Pesquisas da Amazônia (Inpa), há um lugar informalmente chamado de ‘sala do futuro’. Nesta sala, é simulado um cenário de extremo de mudanças climáticas, conforme as projeções do Painel Intergovernamental de Mudanças Climáticas, o IPCC: temperaturas cerca de 5 ºC mais quentes daquilo que é medido em tempo real, em Manaus (AM), e maior concentração de CO2 na atmosfera (708 partes por milhão a mais, precisamente). Ali, a bióloga Samara Souza conduziu um experimento com tambaquis, expondo-os, para além dessas condições extenuantes, a uma mistura de agrotóxicos encontrados nas águas das proximidades da capital amazonense.

“Quando se fala em mudanças climáticas, o aumento das temperaturas não é o único elemento em que devemos prestar atenção”, explica Adalberto Val, coordenador do Instituto Nacional de Tecnologia (INCT-Adapta), onde a pesquisa foi conduzida.

Especializada no efeito de contaminantes em peixes amazônicos, Samara já tinha uma compreensão madura de como diferentes agrotóxicos afetam os animais. Combiná-los a um cenário extremo de mudança climática é, para ela, uma maneira de compreender melhor o que ocorre nos habitats e quais desafios os organismos enfrentarão no futuro, na ausência de políticas que lidem com essas questões.

 Foto: Rafa Neddermeyer / Agência Brasil

Para o estudo, 36 tambaquis juvenis foram divididos entre um cenário que simula as condições atuais de temperatura e CO2, e o cenário extremo, sendo expostos a esses ambientes por 96 horas. Dos quatro agrotóxicos utilizados, dois (clorpirifós e malathion) são inseticidas, além de um herbicida (atrazina) e um fungicida (carbendazim), em concentrações semelhantes às encontradas nas águas das proximidades de Manaus.

Mesmo em concentrações abaixo do que é considerado letal para os peixes, a mistura dos compostos já traz impactos negativos aos tambaquis, como danos no fígado e efeitos adversos no sistema nervoso, que levam à paralisia e perda de funções. Porém, somado ao cenário climático extremo, alguns desses danos se exacerbam. Em outras palavras, em temperaturas mais altas, os peixes perdem a capacidade de metabolizar e se livrar desses compostos em seu corpo.

Isso se dá porque o aumento da temperatura ambiente de maneira tão aguda exige do peixe ajustes em seu metabolismo. As consequências disso são graves. Por exemplo, a contaminação por inseticidas organofosforados  leva à inibição de uma enzima crucial na propagação de impulsos nervosos dos peixes, a acetilcolinesterase (AChE), e de outras enzimas que têm ação antioxidante nas brânquias.

Conforme explica Samara, “em contato com a água contaminada, os peixes que já estavam lidando com a temperatura alta e a maior concentração de CO2 ficam mais suscetíveis aos agrotóxicos por seu metabolismo não ter a resposta apropriada a eles, produzindo efeitos mais nocivos em comparação ao cenário atual de condições climáticas.”

Essa combinação produziu danos irreparáveis no fígado dos animais, além de danos também no DNA de suas células sanguíneas.

Os efeitos de agrotóxicos nos peixes

Atualmente, o Brasil possui cerca de 4.455 agrotóxicos registrados para uso agrícola, segundo dados do Ministério da Agricultura e Pecuária (Mapa), com usos e formulações diversas, que vão desde a lavoura até a pastagem. Desses, 1.017 são inseticidas organofosforados, a exemplo do clorpirifós e do malathion, utilizados na pesquisa com os tambaquis.

Diversas pesquisas têm se voltado ao efeito dos organofosforados em organismos aquáticos devido ao modo como esses compostos agem. Em insetos, a quem buscam eliminar, esses químicos atrapalham o bom funcionamento do controle do impulso nervoso, inibindo a produção da enzima acetilcolinesterase.

Todavia, o composto não afeta apenas as pestes-alvo. Em contato com corpos d’água, esses organofosforados têm o mesmo efeito em peixes ou em insetos aquáticos. Artoni também é autor de pesquisas que testam esses efeitos em tambaquis, sobretudo de um outro organofosforado muito acessível no mercado, o triclorfon. 

“O composto leva o peixe a perder o equilíbrio. Dependendo da concentração, o animal passa a nadar de lado, com uma letargia que o impede de fugir de um predador ou de migrar em seu habitat natural”, explica. “Pouquíssimos peixes voltam quando expostos já a 50% da concentração considerada letal.”

Analisando tecido do fígado de tambaquis, Artoni e sua equipe também averiguaram como o triclorfon leva à morte celular, ativando genes relacionados à formação de tumores. 

Como os agrotóxicos chegam aos rios da Amazônia

Em dezembro de 2019, o ecotoxicologista espanhol Andreu Rico esteve na Amazônia brasileira para avaliar as concentrações de agrotóxicos nos corpos d’água de Manaus, Belém, Santarém e Macapá. Foi a partir da pesquisa de Andreu que Samara estabeleceu o que seriam concentrações realistas dos compostos para utilizar em seus experimentos com tambaquis.

Andreu conduziu uma avaliação da capacidade tóxica desses componentes na Amazônia a partir de dados já existentes sobre a letalidade dos compostos para diferentes espécies. Com isso, foi possível determinar como, próximos a essas cidades, as concentrações encontradas dos inseticidas clorpirifós e malathion são altamente perigosas para a biodiversidade aquática. Ao todo, 11 compostos foram detectados nas águas.

Foto: Fabio Rodrigues-Pozzebom / Agência Brasil

O crescimento da população urbana na Amazônia gerou um aumento na demanda por comida, que passou a ser atendida por atividades agrícolas de pequeno porte ao redor das regiões metropolitanas. Segundo dados do MapBiomas, a área dedicada à agricultura aos arredores de Manaus saltou de 16 hectares, em 2004, para 197, em 2022.

Um artigo publicado pela The Royal Society of Biological Sciences, em 2013, demonstrou como o cultivo de frutas e vegetais não-nativos é responsável por um aumento do uso de agrotóxicos para combater pestes e competição com outras plantas. Uma vez no solo, os químicos se lixiviam e chegam aos rios com facilidade.

Todavia, os levantamentos sobre uso de pesticidas na região são feitos por universidades e centros de pesquisas, apenas. Atualmente, não há um acompanhamento oficial sobre esse crescimento. A falta de dados disfarça, inclusive, outros usos diversos desses compostos que ocorrem na região sem o devido controle ou fiscalização.

Por exemplo, a professora do Departamento de Parasitologia da Universidade Federal do Amazonas (Ufam), Ana Gomes, explica como o triclorfon é utilizado para o combate de parasitas no cultivo de peixes, pela aquicultura da região. 

Publicações científicas, como as do próprio Roberto Artoni, trazem relatos de piscicultores que expõem seus peixes a banhos de imersão com estes compostos, o que gera os efeitos negativos já mencionados nos próprios animais de cultivo. Os estudos evidenciam que organofosforados em peixes cultivados podem ficar até 15 dias nas vísceras do animal sob tratamento. Além disso, se não houver controle de entrada e saída da água neste cultivo, “a possibilidade desses compostos irem para os rios é muito relevante”, alerta Ana.

Procurada pela reportagem, a Associação Independente de Aquicultores do Estado do Amazonas não reconheceu o uso dos compostos citados na piscicultura do estado. Todavia, não há uma avaliação formal dessa utilização por parte da associação.

Agroquímicos no Brasil e suas alternativas

“O aumento da área agrícola explica apenas em parte o consumo de agroquímicos no Brasil”, defende o biólogo Charles dos Santos. Em 2018, Charles publicou um estudo com o levantamento que colocou o país como o maior consumidor de defensivos agrícolas no mundo, com um crescimento da demanda de 150% em 15 anos.

Foto: Reprodução/Governo de Rondônia

Embora esse acréscimo esteja diretamente relacionado à expansão da fronteira agrícola do país, Charles coloca como outro fator importante nesse aumento o uso inadequado desses compostos. “No temor de perder a produção, há uma tendência para se usar muito mais do que é recomendado, inclusive misturando compostos, para ter essa sensação de maior controle”, aponta Charles.

Todavia, esses agroquímicos tem uma alta persistência e alta mobilidade no meio ambiente. O herbicida atrazina utilizado na pesquisa de Samara, por exemplo, persiste até 100 dias na água antes de se dissolver completamente. Na Europa, a atrazina é banida já há 20 anos, à semelhança do clorpirifós, também proibido. Todavia, o Brasil continua sendo um mercado consumidor desses produtos cuja patentes sequer são nacionais.

Especificamente para a Amazônia, um cenário de mudanças climáticas somado aos efeitos destes compostos se apresenta como uma ameaça à segurança alimentar da região, que encontra nos peixes sua principal fonte de proteínas. Afinal, apenas em Manaus se consome cerca de 400 toneladas de tambaqui por ano. Além de risco à saúde, essa combinação também representaria perdas de produtividade na pesca e na aquicultura da região.

Por outro lado, o Brasil também é um mercado em potencial para alternativas aos agroquímicos. Por exemplo, Charles é um entusiasta do controle biológico nas lavouras, que consiste em introduzir uma espécie que preda a peste em questão até reduzir sua população ou eliminá-la.

Já na aquicultura, além da necessidade de haver controle na entrada e saída da água, também estão sendo desenvolvidas pesquisas no âmbito do Inpa e do INCT-Adapta  para utilização da tecnologia de bioflocos. Trata-se do uso de microrganismos para a melhoria da qualidade da água nos sistemas de criação, levando a ganhos imunológicos nos animais e, consequentemente, reduzindo o uso de agroquímicos e outros medicamentos.

*O conteúdo foi originalmente publicado pela Mongabay, escrito por Tiago da Mota e Silva

Publicidade
Publicidade

Relacionadas:

Mais acessadas:

Espécies novas de sapos ajudam a entender origem e evolução da biodiversidade da Amazônia

Exames de DNA feitos nos sapos apontam para um ancestral comum, que viveu nas montanhas do norte do estado do Amazonas há 55 milhões de anos, revelando que a serra daquela região sofreu alterações significativas.

Leia também

Publicidade